
Number 1, 2005 TEXT Technology 99

Towards Next Generation Text Analysis Tools: The
Text Analysis Markup Language (TAML)

Stéfan Sinclair
McMaster University
sgs@mcmaster.ca

Abstract
There is a demonstrated need for literary text analysis tools that take
advantage of networked resources and the potential of graphical inter-
faces. Despite several initiatives over the years, there has been little suc-
cess in developing text analysis tools collaboratively or in creating an
interoperable framework for tools development. This article presents ini-
tial work towards a Text Analysis Markup Language (TAML) that would
foster the distributed development of literary text analysis tools. Any stan-
dardization of a vocabulary requires difficult choices, but it also entails a
beneficial examination of the needs and practices of a community. TAML
is both a technical specification and a product of sociological
introspection.

KEYWORDS: Text analysis tools, interoperability, markup languages.

Introduction

A recent survey of how computers are used by scholars in the humani-
ties reveals that there is an underwhelming recognition and use of text
analysis tools, and that the tools being used are mostly limited to older
applications such as TACT, WordCruncher, and Concordancer (Siemens
et al. 2004). The respondents of the survey who do use tools also generally
expressed dissatisfaction with the selection of tools currently available.
That the DOS-based TACT, last updated over ten years ago, is still the
tool of reference for many researchers is a testimony to the strength of its
design and functionality (see Lancashire 1996 for more information on
TACT), but also suggests that the environment for tools development in
the humanities is not as dynamic as it might be. TACT was created through
substantial institutional support and the backing of IBM within the frame-
work of University of Toronto’s Centre for Computing in the Humanities;
such support -- though wonderful when available -- is not only rare, but
tends also to be ephemeral. Moreover (and more critically), the concentra-

Number 1, 2005 TEXT Technology 100

tion of resources in centralised research centres that work toward larger,
more complex, stand-alone programs tends not to benefit from the larger
community of developers. If we, as computing humanists, wish to spawn a
new generation of tools that correspond to the needs of our community and
the capabilities made possible by current technologies, I believe that we
need to be much more deliberate about how tools development occurs.

Needless to say, a concerted effort to foster tools development in
our community is a long-term, multi-faceted enterprise. As several col-
leagues and I have begun exploring in other venues, part of the effort might
consist in establishing a peer-review process for tools development (see
Sinclair et al. 2003). By recognising and appropriately rewarding the intel-
lectual contribution of the tools development process (including design,
coding, documentation, usability testing, application, etc.), we would very
likely provide more incentive to our colleagues to invest the time and
effort necessary for tools development. Likewise, including pedagogical
modules on computer programming in the humanities computing curricu-
lum would undoubtedly lead to a larger pool of researchers motivated and
able to contribute meaningfully to the development of text analysis tools.
There are compelling reasons for wanting the next generations of comput-
ing humanists (or at least a subset of them) to be creators of tools and not
only users of them (see Gouglas et al. 2005 for a description of integrating
programming into a graduate humanities computing programme).

The Text Analysis Markup Language (TAML), presented here, is
part of another strategy to encourage the development of text analysis tools
for humanists. Though TAML is itself a technical specification (which will
be described further below), its underlying objective is to stimulate the
development of smaller, more specialised, interoperable tools. Rather than
have every tool developer create each of the components that are neces-
sary for stand-alone text analysis tools (and as such reinvent many wheels),
TAML allows developers to reuse existing resources and to focus specifi-
cally on creating innovative or much-needed functionality. This modular
architecture is especially well-suited to pedagogical purposes as students,
in the constrained time of a term, are able to concentrate on extending the
possibilities of existing tools rather than having to create everything from
scratch.

The benefits of modularity and code reuse in software engineer-
ing are well established (see Baldwin & Clark, 2000; Feller & Fitzger-
ald, 2000) and recognised in the humanities computing community. The
need for modular systems with flexible mechanisms for data exchange was

Number 1, 2005 TEXT Technology 101

clearly identified during a 1996 software planning meeting organised at the
Princeton/Rutgers Center for Electronic Texts in the Humanities (CETH):
“the next-generation software system we are thinking about must not only
comprise a number of independent, interoperating modules with consis-
tent interfaces, it must also be open: it must allow single modules to be
replaced by other modules possibly developed by different programmers;
it must be possible to add new modules to the system, and to access data at
any and every module boundary” (Sperberg-McQueen).

And yet there has not been a (successful) coordinated effort of
code development for text analysis tools in the humanities. It is worth
noting that there have been several fleeting attempts at establishing soft-
ware collectives, such as the “Text Software Initiative” (see Ide, 1993)
and the “Encoded Text Analysis Initiative (See Horton, 1998). But these
efforts have failed (despite the abilities and best intentions of those leading
the initiatives) in part, I believe, because there was no robust mechanism
for data interchange between tools. Given the potential for diversity and
structural complexity of text analysis data (compared to, say, web log files
on a Unix server), there seems little hope of getting various tools to talk to
one another in an ad-hoc fashion. Open, modular software development in
the humanities (often by researchers with comparatively little or no formal
training in computer science, or by temporary graduate assistants or hired
staff) requires a defined, flexible architecture with a standardised vocabu-
lary for inter-tool communication.

I have no illusions about TAML being a panacea for the challenges
of text analysis tools development; a successful strategy will still require
unusual generosity of programmers, buy-in and feedback from users, coor-
dination and leadership, luck, and much else (see Unsworth 2003 for other
possible ingredients). But I envision (during my weak moments) TAML
creating a snow-ball effect that has the potential for significant impact on
our field: a few developers initially collaborating on compatible tools that
are compelling enough to attract incrementally a larger and more dynamic
community of developers and users. In any case (and even if the snow-ball
vision is not realised), a careful consideration of how a standardised text
analysis language might be expressed is a useful exercise in its own right,
as crucial questions of tool design, user needs, and data representation
must be confronted (this is akin to what the Text Encoding Initiative (TEI)
can reveal to us about the nature of encoding and digital texts; see, for
instance, the discussion by Renear et al. (1993) of the Ordered Hierarchy
of Content Objects (OHCO) thesis).

Number 1, 2005 TEXT Technology 102

1. The TAML Language

It should be noted that though the motivations and potential benefits of
TAML, as described above, seem clear (and much more could be said),
the actual syntax of TAML is much less certain; what follows is meant
as a sketch rather than a fully developed picture. The development of a
standard syntax for a community of developers should involve members
of that community, and it is my hope that the description that follows will
continue to evoke comments, criticisms and emendations to the TAML
language.

TAML is an XML-based markup language that is intended to express two
types of information:

1. text analysis tasks to be performed, including relevant
parameters and options

2. data generated as output from the tasks (or in some
cases used as input parameters)

(A technically inclined, skeptical reader might already question the need
for TAML, yet another markup language, when other task-oriented stan-
dards exist for web services, such as UDDI, WSDL and SOAP. However,
such a reader would be reminded that these web services languages rely
on documented APIs that provide fixed syntax for communication, just as
TAML proposes to do. There is no reason why TAML cannot leverage,
when appropriate, the strengths of web services by being embedded in,
say, a SOAP envelope. It may also be worthwhile to point out that web
services are especially designed for relatively simple business transactions
(querying the status of a parcel to be delivered, for instance), and that more
complex data structures and processes -- frequent in text analysis -- seem
much less well-suited to web services.)

The two types of information -- tasks (with parameters) and output data
-- can be used in three primary types of communication:

1. between an initial user interface and a text analysis tool
or TAML broker
2. between various text analysis tools or TAML brokers

Number 1, 2005 TEXT Technology 103

3. between a text analysis tool or TAML broker and a user
interface (such as a browser)

(A TAML broker is essentially a dispatch tool that coordinates the effort of
other tools, translating non-TAML input and output data when required by
non TAML-aware tools.) TAML is in fact composed of two parts the Text
Analysis Query Language (TAQL) and the Text Analysis Results Lan-
guage (TARL). In most situations a TAQL instance is received by a tool
(input), specifying what action or actions to perform, and a TARL instance
is emitted by that tool (output), providing the requested results.

A scenario involving the three types of communication enumer-
ated above might begin with a simple interface that allows a user to select
a text from a pull-down menu (Lewis Carroll’s Alice in Wonderland), an
action to perform (a keyword in context list), and an additional submenu
to specify a parameter (the size of the context):

· source text: Lewis Carroll: Alice in Wonderland
· action to perform: Keyword in Context
o keyword: Alice
o size of context: words 10

Submit

The interface could package this query in TAML and send it to a TAML
broker that would examine the request to determine which tool or tools
in its database would be most appropriate to execute it. For this example
we can suppose that there is an aggregator tool that proceses requests for
keyword in context lists, by sending requests to three other tools: a word
tokenizer (that creates a list of all the words in the text), a word searcher
(to find the keyword being requested), and a text generator (to retrieve the
context of each occurrence of the keyword). To make the current example
more realistic, we might further imagine that the word tokeniser is a tool
that is not TAML-aware, but that the TAML broker is able to translate data
produced by the word tokeniser into proper TAML form.

Finally, the output from the keyword in context list tool, expressed
in TAML-conformant XML, is transformed by an XSLT stylesheet to be
displayed in HTML in the user’s browser.

Number 1, 2005 TEXT Technology 104

An overview of TAML’s architecture

Number 1, 2005 TEXT Technology 105

2. The TAML Syntax

Any markup language that is to be used to express information that is not
finite in type and structure must confront the tension that exists between
generality and specificity. For example, is it preferable to express data
with semantically meaningful tags (like <raw-frequency>) or with pro-
grammatically meaningful tags (like <integer name=”raw-frequency”>).
Below is a summary of some of the advantages and disadvantages of each
approach:

Data-Type Syntax Content-Specific Syntax

Advantages

• small vocabulary, easy
to learn easier to import
as native data types in
various programming
languages

• easy to extend to a
variety of situations

• easier to check integ-
rity of data structure
through validation more
human-readable

•small vocabulary, easy to
learn

• easier to import as native
data types in various pro-
gramming languages

Disadvantages

• depends on external
documentation for
structure

• can be difficult to
predict

• enormous vocabulary to
learn and
understand (cf. TEI)

• can be less flexible for
tweaks and new
types of tools

Given that TAML is a multi-purpose language, with ambitions of both
simplicity and extensibility, it seems most appropriate to adopt a hybrid
model of tagging: a small built-in tagset that is data-type oriented, as well
as an openness to content-specific tagsets imported through namespaces.
This is not a fence-sitting compromise, it is a recognition of the diverse
contexts in which TAML is likely to be used.

Below is an example of a TAML document (a TARL instance). (It
should again be emphasised that this syntax is in current development and

Number 1, 2005 TEXT Technology 106

is likely to change substantially before its first public release.)

<?xml version=”1.0”?>
<results xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:noNamespaceSchemaLocation=”[TAML Schema URL]”
 xsi:schemaLocation=”[TAML Frequencies URL] [TAML Schema
URL]”
 xmlns:frequencies=”[TAML Frequencies URL]”>
 <summary>
 <summary xmlns=”[TAML Frequencies URL]”>
 <types-count>4</types-count>
 <tokens-count>6</tokens-count>
 </summary>
 </summary>
 <data template=”raw-frequencies”>
 <items xmlns=”[TAML Frequencies URL]”>
 <item raw=”2”>to</item>
 <item raw=”2”>be</item>
 <item raw=”1”>or</item>

 <item raw=”1”>not</item>
 </items>
 </data>
</results>

I have outlined some of the characteristics of TAML, the Text Analysis
Markup Language. As distributed software development proceeds forward
through coordinated efforts like the TAPoR Project (see Sinclair & Butler,
2002), through pedagogical efforts in various humanities computing pro-
grammes, and through disparate community contributions, it is essential
that we have in place a means for tools to communicate effectively. With-
out protocols of communication the internet would be a vast collection
of computers babbling in isolation; would that the next generation of text
analysis tools be more coherent.

Number 1, 2005 TEXT Technology 107

Works Cited

Baldwin, C. Y. and Clark, K. B. (2000). Design Rules. Vol. I: The Power of Modu-
larity. Cambridge, MA: The MIT Press.

Feller, J. and Fitzgerald, B. (2000). A framework analysis of the open source soft-
ware development paradigm. In Proceedings of the twenty-first inter-
national conference on Information systems, pp. 58—69. Atlanta, GA:
Association for Information Systems.

Gouglas, S., A. Morrison, S. Sinclair (2005). “Coding Theory: Balancing Techni-
cal and Theoretical Requirements in a Graduate-Level Humanities Com-
puting Programme.” Mind Technologies. Ed. Ray Siemens. University
of Calgary Press.

Horton, T. (1998). “Elta Software Initiative (text-analysis).” Online posting,
Humanist Discussion Group. 28 May 1993. Accessed 7 July 2004 <http://
lists.village.virginia.edu/lists_archive/Humanist/v12/0242.html>.

Ide, N. (1993). “The Text Software Initiative.” Online posting, Humanist Discus-
sion Group. 7 October 1998. Accessed 7 July 2004 <http://lists.village.
virginia.edu/lists_archive/Humanist/v07/0031.html>.

Lancashire, Ian. (1996). Using TACT with Electronic Texts: A Guide to Text-Anal-
ysis Computing Tools. New York: MLA.

Renear, A., E. Mylonas & D. Durand. (1993). “Refining our Notion of What Text
Really Is: The Problem of Overlapping Hierarchies.” 6 January 1993.
Accessed 7 July 2004 <http://www.stg.brown.edu/resources/stg/mono-
graphs/ohco.html.>

Siemens, R., E. Toms, G. Rockwell, S. Sinclair, L. Siemens. (2004) “The Human-
ities Scholar in the Twenty-first Century: How Research is Done and
What Support is Needed.” June 2004. Accessed 7 July 2004 <http://
www.hum.gu.se/allcach2004/AP/html/prop139.html>.

Sinclair, S., J. Bradley, S. Ramsay, G. Rockwell, R. Siemens. (2003). “Peer Review
of Humanities Computing Software.” Proceedings from the Joint ACH/
ALLC Conference, Athens (Georgia).

Sinclair, S. and T. Butler. (2002). “TAPoR - A Canadian Text Analysis Portal for
Research.” Digital Resources in the Humanities, Office for Humanities
Communications, London.

Sperberg-McQueen, M. (1996). “Text Analysis Software Planning Meeting.” 23
May 1996. Accessed 7 July 2004 <http://tigger.uic.edu/~cmsmcq/trips/
ceth9505.html>.

Unsworth, J. (2003). “Tool-Time, or ‘Haven’t We Been Here Already?’ Ten Years
in Humanities Computing.” 18 January 2003. Accessed 7 July 2004
<http://www.iath.virginia.edu/~jmu2m/carnegie-ninch.03.html>.

